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Concrete-filled steel tube (CFST) is a composite member consisting of a steel tube filled with 

concrete, resulting in an enhanced structural element used in various types of construction. This 

research investigates the flexural strength of CFST members with varying steel tube thicknesses 

of 1.5 mm and 2.0 mm and different shapes: square, rectangular, and circular. The study aims 

to determine the flexural strength of each shape. Fifteen beams with different cross-sections and 

plate thicknesses were tested experimentally in the lab. The results indicated that 2.0 mm thick 

CFSTs, regardless of shape, exhibited superior strength and deformation resistance compared 

to thinner and hollow beams. This underscores the significance of using thicker plates and con-

crete to enhance structural integrity and durability. Notably, rectangular CFSTs demonstrated a 

91.84% increase in strength, while circular beams showed greater deflection resistance, high-

lighting the importance of careful material selection and design choices in structural engineering 

to optimize performance and resilience under stress. 
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1. Introduction 

Concrete-filled steel tubes (CFSTs) are composite structural elements made by encasing concrete 

within a steel tube. These components are primarily used in constructions that experience significant bend-

ing moments. Widely applied in various structural frameworks, CFSTs serve as beams, beam-columns in 

both braced and unbraced frames, and as columns, demonstrating their extensive utility in modern archi-

tecture [1]. 

Construction employs various beam types, such as reinforced concrete, shear, flexural, bending, pre-

stressed, and composite beams. They are categorized by support types (simply supported, continuous, can-

tilever, fixed) and by shape (rectangular, circular, square, T-shaped, I-shaped, triangular). Engineers today 
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have access to a broad selection of beams to efficiently tackle any construction project, particularly in the 

building sector. Nonetheless, the Concrete-Filled Steel Tube (CFST) system stands out as a modern and 

increasingly popular solution, capturing global interest due to its innovative features [2]. 

Research from the 1970s demonstrated that CFSTs and H-shaped beams are more ductile and have 

more strength than traditional reinforced concrete or steel systems. Infrastructures such as high-rise build-

ings, road and railway bridges, transmission towers, and offshore structures now utilize this technology. 

Japan, in particular, has been a leader in adopting CFST technology in its construction projects. Naka Kato, 

a Japanese pioneer, wrote the first technical paper on the use of circular CFSTs in power transmission 

towers [3].The Hollow Steel Tube (HST) forms the core of Concrete-Filled Steel Tubes (CFST) members, 

which are composite structures. Local buckling can occur in the flange of an HST when the width-to-

thickness ratio (B/t) exceeds a certain threshold, potentially compromising the beam's plastic bending mo-

ment. To counteract this and enhance the performance of HST beams, filling them with concrete is an 

effective strategy. Although this addition slightly increases the overall weight, it is a reliable method to 

boost the strength, ductility, and stiffness of HST members [4]. 

To date, the bulk of research on Concrete-Filled Steel Tubes (CFST) has centered around rec-tangu-

lar, circular, and square sections, which are common cross-sectional shapes in construction [5]. A recent 

study amassed a substantial database of 3103 tests [6], focusing on rectangular and circular CFST columns 

subjected to axial compression and combined axial force with bending moments. These test results were 

subsequently compared against predictions from various design codes to evaluate their suitability for de-

signing high-strength materials. 

Several studies have explored the performance of elliptical Concrete-Filled Steel Tube (CFST) mem-

bers, including stub columns and beam-column behavior. Polygonal cross-sections, commonly used in tel-

ecommunication structures, have garnered interest among researchers for use in composite constructions 

like hexagonal and octagonal shapes. While there is limited research on the flexural be-havior of circular 

CFST components, rectangular and square shapes have received more attention. En-hancing the under-

standing of the flexural behavior of rectangular and square CFST members is crucial to promoting the 

utilization of circular steel tubes in CFST structures. Therefore, the primary aim of this research is to ex-

perimentally investigate the flexural behavior of CFST beams with square, rectan-gular, and circular cross-

sections under flexural loading. 

In this study, fifteen Concrete-Filled Steel Tube (CFST) beams were examined, divided into three 

shapes: rectangular, square, and circular, with four specimens for each shape. Half of the steel used in the 

test had a thickness of 2.0 mm, while the other half had a thickness of 1.5 mm. Half of the specimens were 

filled with concrete, using a mix ratio of 1:2:4 for each shape and size, and were sub-jected to flexural 

loading. The remaining steel specimens, of various sizes for rectangular, square, and circular shapes, were 

tested without concrete under flexural loading as well. 
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The objective of these tests was to compare the flexural resistance of Concrete-Filled Steel Tube 

(CFST) beams with different cross-sectional shapes, namely rectangular, square, and circular. The in-ves-

tigation involved varying the thicknesses of the steel tubes, using 2mm and 1.5mm, to determine the effect 

on flexural strength. Additionally, we included a standard concrete beam without any steel rein-forcement 

as a control specimen. This comparative analysis aimed to identify which shape and thick-ness of CFST 

beams offer the greatest resistance to flexural stress. CFST beams face challenges, partic-ularly during 

curing, as there is no space between the steel tube and the concrete. This may necessitate prefabrication or 

the use of specialized materials for curing. The research extensively investigates CFSTs both experimen-

tally and theoretically, aiming to showcase their capability, ductility, and strength under flexural loading, 

as well as understand their behaviors. 

2. Experimental Program 

2.1 Specimens 

Table 1 summarizes the details of the 15 specimens. Three different types of steel tubes are used, 

such as rectangular, circle, and square, as shown in Figure. 1. For each type, five specimens were investi-

gated, which include the base, which is the beam without hollow steel and concrete fill (CB), and act such 

as a benchmark for other cases. The next specimens are the hollow steel beam without concrete fill (HSB) 

for the plate thicknesses of 1.5 mm and 2.0 mm, tested separately. The final specimens are the concrete-

filled steel beams (CFS) for both plates, 1.5 mm and 2.0 mm, tested separately.   

The test parameters for rectangular and square steel tubes included the tube width (d) of 100 mm 

and 50 mm, respectively. All the specimens had a height (H) of 100 mm and a length (L) of 1,000 mm, with 

a diameter (D) of 100 mm, for circular shape. There are two different type of tube thickness (t) used for all 

specimen:1.5 mm and 2.0 mm, and the yield stress of steel Fy (236 and 246 MPa). 

The specimens are labeled, and to make it easier for the reader, for all shapes there are common 

symbols such as (CB) representing the control beam, (HSB) representing the hollow steel beam, and (CFS) 

representing the concrete filled steel beam. Also, to show the comparison between different shapes, the 

labels S, R, and C represent the square, rectangular, and circle shapes, respectively.  

 

Figure 1. CFST beam shapes and dimensions 
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Table 1. Detail of specimen 

Shapes Specimen ID d (mm) H (mm) (t) mm d/t ratio Length (L) (mm) Steel strength (Fy) (MPa) 

Rectangular 

CBR 50 100 --- --- 1000 --- 

HSBR-1.5 50 100 2.0 25 1000 236-246 

HSBR-2.0 50 100 1.5 33.33 1000 236-246 

CFRT 1.5 50 100 2.0 25 1000 236-246 

CFRT-2.0 50 100 1.5 33.33 1000 236-246 

Square 

CBS 100 100 --- --- 1000 --- 

HSBS-1.5 100 100 1.5 66.667 1000 236-246 

HSBS-2.0 100 100 2.0 50 1000 236-246 

CFST 1.5 100 100 1.5 66.667 1000 236-246 

CFST-2.0 100 100 2.0 50 1000 236-246 

Circle 

CBC D100 --- --- 1000 --- 

HSBC-1.5 D100 1.5 66.667 1000 236-246 

HSBC-2.5 D100 2.0 50 1000 236-246 

CFCT-1.5 D100 1.5 66.667 1000 236-246 

CFCT-2.0 D100 2.0 50 1000 236-246 

Note: d= width, H= height, D= diameter, t= plate thickness, L= Length, and fy= yield stress of steel. 

2.2. Mix Proportion 

Choosing the right mix proportion is vital for improving the durability, strength, and workability of 

concrete. A well-balanced mix ensures that the concrete can withstand environmental conditions, support 

heavy loads, and be easily handled during construction. By carefully selecting the materials and their pro-

portions, builders can ensure that the concrete meets the specific requirements of the project. This means 

choosing a good mix proportion that is most conservative for the concrete, so in this investigation (1:2:4) 

proportion is used for all cases of concrete filled steel tube beams, and it is one of the good mixtures that 

come from standard, is strong, and has more usage in fields [7-8]. Table 2 finds each component of (cement, 

sand, gravel, and water) that is used for 1 m3 of concrete for mix proportion. 

Table 2. Mix Proportion of Self Compact Concrete (SCC) 

Concrete Filled Steel Tube Beam Type Volume (m³) Water (m³) Cement (m³) Sand (m³) Gravel (m³) 

All case 1 0.087 0.213 0.426 0.853 
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2.3. Test Setup, Instrumentation, and Loading Procedure  

2.3.1. Material Characterization 

In this investigation, five preliminary tests were conducted to determine the flexural strength of 

concrete-filled steel tubes. Initially, the Sieve Analysis Test assessed aggregate particle size gradation by 

shaking a 1005 g sample for fine and a 610 g for coarse aggregate used through progressively smaller sieves, 

crucial for evaluating the impact on concrete's workability and strength [9]. The results were compared for 

ASTM in lower and higher limits, as shown in Figure. 2. 

 

a) Fine aggregate  

 

b) Coarse aggregate  

Figure 2. Sieve Analysis; a) fine aggregate and b) coarse aggregate 
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Following this, the Concrete Slump Test involved filling a lubricated mold with concrete in four 

layers, each tamped 25 times, to measure workability by the slump after leveling and cleaning [10]. Subse-

quently, the Normal Consistency Test for cement determined the necessary water percentage for the cement 

paste, using up to five molds due to failures, to achieve a Victa plunger penetration of 10 mm [11]. Addi-

tionally, the Setting Time Test monitored the time taken for cement to become non-workable, marking 

initial and final setting times by the needle's penetration limit, and the below equation was used, where t is 

equal to the time of the initial setting [12]; 

(90 + 1.2 ∗ 𝑡) 𝑡             (1) 

The Compressive Strength Test then evaluated the load-bearing capacity of concrete cubes, requiring 

precise placement in a testing machine and careful loading to record the maximum weight and failure type 

[13]. Finally, the Flexural Strength Test compared normal concrete to concrete-filled steel tubes using a 

three-point load test on specimens that were mixed, cast, and cured for 28 days before testing under con-

trolled conditions to ascertain performance through systematic force application and dimension measure-

ment at critical points as shown in Figure. 3 [14]. 

 

Figure 3. Flexural Strength Test 
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2.3.2. CFST Beam Test Setup, Instrumentation and Loading Procedure  

In setting up the tests for CFST beams with rectangular, square, and circular shapes, meticulous at-

tention was paid to ensuring consistency and accuracy throughout the experimental process. The test setup 

involved securing each beam specimen onto a sturdy testing rig equipped with load cells and displacement 

sensors to precisely measure load and deflection. Prior to testing, the instrumentation was carefully cali-

brated to ensure reliable data collection. The loading procedure followed a standardized protocol, with each 

CFST beam subjected to incremental point loads applied at designated locations along its length. The load-

ing regimen was designed to simulate realistic structural conditions and induce flexural stress evenly across 

the beams. Load increments were carefully controlled, allowing sufficient time for stabilization and data 

recording at each stage. Throughout the testing process, continuous monitoring of load and displacement 

parameters was conducted to capture the behavior of the CFST beams accurately. Any deviations or anom-

alies were promptly addressed to maintain the integrity of the test results. Additionally, safety precautions 

were implemented to prevent any structural failures that could compromise the experimental setup or en-

danger personnel. Overall, the test setup, instrumentation, and loading procedure were meticulously exe-

cuted to ensure reliable and meaningful data acquisition, providing valuable insights into the flexural be-

havior of CFST beams with different shapes. 

3. Results and Discussion 

After waiting for 28 days, all beams were prepared and subjected to point load testing until they 

could no longer sustain additional loads. Initially, the performance of control beams was evaluated against 

beams with hollow steel tubes across all groups. It was observed that filling the tubes with concrete signif-

icantly enhanced the beams' moment-carrying capacity and decreased their deflection, indicating that the 

Concrete-Filled Steel Tubes (CFSTs) offered a stiffer response under load up until failure. Using the results 

of these tests, the next section will discuss the implications of these findings on structural design and ap-

plication [15,16]. 

3.1. Initial and Final Setting  

After selecting a 10 mm penetration depth for the samples and using a water/cement (w/c) ratio of 

0.26, tests were conducted to determine when the concrete begins to harden, known as the initial setting 
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time, as illustrated in Figure. 4. Initially, no change was observed up to 120 minutes, but at 125 minutes, 

there was a noticeable difference in penetration depth. By 150 minutes, the penetration was 22 mm. Stand-

ard practices allow us to define the initial setting time at 25 mm penetration. However, direct measurement 

showed 26 mm at 145 minutes and 22 mm at 150 minutes. Therefore, we used interpolation to calculate the 

exact moment when penetration reached 25 mm, which was at 146.25 minutes. This calculated time fits 

well within the standard requirements, and using this value, we determined that the final setting time was 

265.5 minutes, which aligns with the expected standards. The standard for initial setting time between 30 

minutes and 2 hours and Final Setting Time Typically ranges from 4 to 8 hours [12]. 

 

Figure 4. Setting Time Test 

3.2. Consistency Test 

In order to ensure robust results for the consistency test, a total of five samples were initially prepared. 

Unfortunately, two of these samples did not meet the expected criteria and were therefore considered fail-
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was selected as a critical benchmark for this test. This specific depth corresponds to a water-to-cement (w/c) 

ratio of approximately 0.26, which is indicative of the mixture’s consistency level under the test conditions 

[17]. This parameter is crucial as it helps in evaluating the workability and hydration characteristics of the 

cement paste, providing essential insights into its potential performance in practical applications, as shown 

in Figure. 5 [11]. 
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Figure 5. Consistency Test 

3.3 Compressive Strength 
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3.4 Failure mode  

In all cases, beams displayed deflection capacity, with CFST beams failing due to significant tensile 

rupture towards the end of testing, as shown in Figure. 6. For the first group, hollow steel tubes experienced 

inward local buckling and side buckling towards the conclusion of the test, but without any rupture. Addi-

tionally, the control beam showed outward local buckling, side buckling, and eventual rupture. Furthermore, 

another reinforced specimen exhibited outward local buckling of the steel plate in the compression zone, 

leading to rupture, but without involving the flanges [19, 20]. 

 

Figure 6. Group of steel tube failure mode, A) Hollow steel tube, B) CFST beams 

3.5. Comparison of Failure Load Beams for Different Geometric Shapes 

This study previously examined beams of three different shapes: square, rectangular, and circular. It 

was found that the load-bearing capacities of these beams vary significantly depending on their geometric 

configurations, with no enhancements from plates and uniform plate thickness throughout.  

3.5.1. Controlled Beam Without Plate 

As depicted in Figure. 7, the comparison of the controlled beams between these three shapes showed 

that the square beams had the highest load tolerance, managing to support approximately 5.78 kN. This was 

followed by rectangular beams at 3.44 kN, with circular beams trailing behind at about 2.73 kN. 
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The results indicated that square beams are capable of bearing 40.48% and 53.1% more load than rectan-

gular and circular beams, respectively. The relatively lower strength of the circular beams can be attributed 

to the nature of load distribution; the load being applied at a single point tends to concentrate the force 

centrally, reducing overall structural resistance. 

 

Figure 7. Plane Concrete Beam Capacity 

3.5.2 Hollow Steel Tube Beam 

The study depicted in Figure. 8 compared the ultimate load capacities of hollow steel beams with 

differing plate thicknesses of 1.5 mm and 2.0 mm, across three geometric shapes: square, rectangular, and 

circular. 

At a thickness of 1.5 mm, square beams demonstrated the highest strength, reaching 20.78 kN, fol-

lowed by circular beams at 17.34 kN, and rectangular beams at 11.51 kN. Significantly, square beams 

surpassed their circular and rectangular counterparts by 16.6% and 44.6%, respectively. Circular beams, on 

the other hand, exhibited 33.6% greater strength compared to rectangular beams. For the 2.0 mm thickness, 

square beams again exhibited superior strength at 29.68 kN, followed by rectangular beams at 26.41 kN, 

and circular beams at 21.62 kN. Square beams were stronger by 11% and 27.2% compared to rectangular 

and circular shapes, respectively. Rectangular beams showed 18.14% higher strength compared to circular 

ones [21]. 
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Overall, the findings revealed that beams with a 2.0 mm plate thickness consistently outperformed 

those with 1.5 mm in terms of strength resistance. Specifically, the strength resistance increased by 56.4% 

for rectangular, 30% for square, and 19.8% for circular shapes when comparing the two thicknesses. This 

indicates a significant enhancement in structural integrity with increased plate thickness across all tested 

geometries [22]. 

 

Figure 8. The comparison of ultimate load for hollow steel beam for 1.5 mm and 2.0 mm for geometric 

shape square, rectangular and circular. 
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Overall, the data indicates that beams with a 2.0 mm thickness demonstrate significantly greater 

strength resistance across all shapes compared to those with 1.5 mm plates. Moreover, irrespective of the 

plate thickness, the strength hierarchy consistently favored the circular, followed by square, and then rec-

tangular shapes. This pattern highlights the enhanced durability provided by concrete when used in con-

junction with hollow steel structures, particularly noting a substantial increase in load-bearing capacity for 

circular beams, nearly tripling their strength with both tested thicknesses. 

 

Figure 9. The comparison of ultimate load for concrete filled steel beam for 1.5 mm and 2.0 mm for geo-

metric shape rectangular, square, and circular. 
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Figure 10. The comparison of ultimate load for hollow steel beam and concrete filled steel beam for 1.5 

mm and 2.0 mm for geometric shape rectangular, square, and circular. 
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crucial role of plate thickness in improving structural integrity. The research emphasizes the importance of 

choosing the right plate thickness to enhance durability and performance in engineering applications. 

3.6.1. Rectangular Geomatic Shape 

Figure. 11 illustrates the effects of plate thickness on flexural strength by comparing a range of spec-

imens to a controlled beam with a rectangular shape. This detailed comparison reveals that Concrete-Filled 

Steel Tubes (CFRT) with a 2.0 mm thick plate exhibit the highest resistance, followed sequentially by 
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CFRT with a 1.5 mm plate, Hollow Steel Box Sections (HSBR) with a 2.0 mm plate, HSBR with a 1.5 mm 

plate, and finally the Controlled Beam (CBR). When these findings are quantified, it becomes apparent that, 

compared to the controlled beam, the CFRT (2.0 mm) shows an increase in resistance of 91.84%, the CFRT 

(1.5 mm) by 87.6%, the HSBR (2.0 mm) by 87%, and the HSBR (1.5 mm) by 70%, underscoring the 

significant impact of increasing plate thickness on enhancing the structural integrity of the beams [24, 25]. 

 

Figure 11. The effects of plate thickness on flexural strength by comparing a range of specimens to a 

controlled beam with a rectangular shape. 

3.6.2. Square Geomatic Shape 

Figure. 12 delves into how variations in thickness affect flexural strength by comparing a range of 

beam specimens against a benchmark control beam with a square shape. Similar patterns were observed in 

tests with rectangular-shaped beams, though with differing values. Strength resistance was observed in 

descending order: CFST with 2.0 mm thickness, CFST with 1.5 mm, HSBS with 2.0 mm, HSBS with 1.5 

mm, and finally, the Controlled Beam (CBS). In-depth analysis indicated substantial increases in resistance 

relative to the control beam: CFST (2.0 mm) showed a 90.44% increase, CFST (1.5 mm) by 86%, HSBS 

(2.0 mm) by 80.5%, and HSBS (1.5 mm) by 72.2%, highlighting how thickness significantly boosts struc-

tural strength [26]. 
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Figure 12. The effects of plate thickness on flexural strength by comparing a range of specimens to a 

controlled beam with a square shape. 

3.6.3 Circular Geomatic Shape 

Figure. 13 offers an in-depth look at how flexural strength varies across different beam types with 

varying plate thicknesses, compared against a control beam shaped like a circle. The study shows that beams 

made from Concrete-Filled Steel Tubes (CFCT) are consistently more resistant to bending than both hollow 

steel beams and the standard control beams. This superior performance is noted across all tested thicknesses, 

indicating that filling steel tubes with concrete markedly improves their ability to withstand bending forces 

[27]. 

In detail, the data indicate that CFCT beams significantly surpass the control beam in terms of flexural 

strength for each tested thickness. The extent of increased strength resistance is remarkable, with all spec-

imens demonstrating enhancements over the control by multipliers of 26.7, 20.38, 7.92, and 6.35, respec-

tively. This extensive analysis highlights the exceptional strength of concrete-filled steel structures when 

facing flexural stress and points out the vital influence of both material choice and structural thickness in 

engineering design. 
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Figure 13. The effects of plate thickness on flexural strength by comparing a range of specimens to a 

controlled beam with a circular shape. 

In conclusion, the analyses of rectangular, square, and circular beams underscore the critical role of 

plate thickness and material composition in enhancing flexural strength, as demonstrated across multiple 

sections above. Concrete-Filled Steel Tubes (CFST) with a 2.0 mm thickness consistently showed superior 

resistance in all geometric shapes, markedly outperforming Hollow Steel Box Sections (HSB) and Con-

trolled Beams (CB). For example, CFST in rectangular beams increased strength by 91.84%, and similar 

trends were noted in other shapes. This pattern reveals that thicker plates and the incorporation of concrete 

significantly boost structural integrity and resilience. These findings highlight the importance of careful 

material and design choices in engineering to improve the durability and performance of structural elements 

under stress. 

3.7. Ultimate Load and Maximum Deflection  

Table 4 in our report offers an exhaustive overview of the data gathered during this study, which 

includes deflection metrics across various beam configurations. Notably, circular beams tend to deflect 

more than other beam types. This phenomenon is primarily due to the moment of inertia that greatly affects 
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the beam's capability to withstand bending and twisting, impacting its deflection properties significantly. 

In the case of beams constructed from plain concrete, the deflection recorded was extremely low—virtually 

undetectable—hence, these figures were entered as zero in our dataset as they were too minor for precise 

measurement. Additionally, the findings reveal that circular concrete-filled steel tubes (CFSTs) show su-

perior resistance to bending and distortion over beams made of plain concrete and those of other shapes, 

highlighting their durability and efficiency in structural uses. This comprehensive evaluation aids in deci-

phering the performance of different material compositions and beam shapes under pressure, offering vital 

information for refining structural designs to enhance their stability and durability [28]. 

Table 4. Collection of all samples that tested with deflections. 

Shapes Specimen ID Ultimate Load (kN) Max. Deflection (mm) 

Rectangular 

CBR 3.44 --- 

HSBR-1.5 11.51 15 

HSBR-2.0 26.41 10 

CFRT-1.5 27.76 3 

CFRT-2.0 42.16 6 

Square 

CBS 5.78 --- 

HSBS-1.5 20.78 35 

HSBS-2.0 29.68 30 

CFST-1.5 41.28 3 

CFST-2.0 60.48 4 

Circle 

CBC 2.73 --- 

HSBC-1.5 17.34 42 

HSBC-2.0 21.62 40 

CFCT-1.5 55.65 28 

CFCT-2.0 72.91 62 

4. Conclusion 

This research investigated concrete-filled steel tubes and compared this composite shape with normal 

control concrete and hollow steel tubes. In this study, 15 specimens were tested, and three different shapes 

of steel tubes were utilized: rectangular, circular, and square. Each shape category included five types of 
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specimens: the base model without any steel or concrete (CB) serving as a benchmark, hollow steel beams 

(HSB) without concrete fill tested at both 1.5 mm and 2.0 mm thicknesses, and concrete-filled steel beams 

(CFST) also tested at these two thickness levels separately. In conclusion, the study of hollow and concrete-

filled steel beams with 1.5 mm and 2.0 mm thicknesses shows that the 2.0 mm concrete-filled beams exhibit 

the highest strength resistance, followed by 1.5 mm concrete-filled and hollow beams. This trend confirms 

that greater thickness and concrete integration substantially enhance beam durability and force resistance. 

The analysis across square, rectangular, and circular beams highlights the essential roles of plate thick- ness 

and material composition in boosting flexural strength. Concrete-Filled Steel Tubes (CFSTs) with a 2.0 

mm thickness consistently outperformed Hollow Steel Box Sections (HSB) and Controlled Beams (CB) in 

all shapes; for instance, CFRT-2.0 rectangular beams showed a strength increase of 59.60% compared with 

HSBR-2.0. This pattern demonstrates that thicker plates and concrete significantly en- hance structural 

integrity and resilience, underscoring the need for thoughtful material and design deci- sions in engineering 

to optimize the durability and performance of structures under stress. Circular beams exhibit greater deflec-

tion than others, primarily because of the moment of inertia, which greatly affects their resistance to bending 

and twisting. Additionally, the study highlights that circular concrete-filled steel tubes (CFSTs) are more 

resistant to deformation than other beam types, emphasizing their superior structural strength and efficacy. 

The use of circular concrete-filled steel tubes (CFSTs) in construction is well-established, as exemplified 

by their previous application in a bridge project in China [29], as mentioned earlier. This underscores the 

viability and effectiveness of CFSTs as a robust construction material. Additionally, rectangular, and square 

CFSTs also provide significant strength and are favored in various construction projects due to their geo- 

metric advantages, which make them easy to implement. 
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