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In this article, machine learning techniques and deep learning methods were applied to the digit 

datasets created using the Arabic and Latin alphabets, and the methods' performances were 

compared. Furthermore, each method was tested with various parameters, and the results were 

analyzed. In addition, this study also observed the recognizability of handwritten numeral da-

tasets created using different alphabets. For experiments, an Arabic alphabet handwritten digit 

dataset (60,000 training and 10,000 testings) and a Latin alphabet handwritten digit dataset 

(60,000 training and 10,000 testings) were used. When the results of the experiment are exam-

ined, it is seen that successful results are obtained in the classification made with the MADBase 

dataset in some methods, and the classification made with the MNIST dataset in some meth-

ods. As a result, it can be stated that a method's handwriting character recognition success 

cannot be measured only by the classification made on a dataset. Also, the digits in the Arabic 

alphabet appear to be almost more recognizable than those in the Latin alphabet. 
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1. Introduction 

Throughout history, handwriting recognition and comprehension have been seen as a problem to be 

solved, and different languages and alphabets have been developed for this. However, many algorithms and 

learning methods for handwriting recognition have been developed and continue to be developed today. 

While developing handwriting recognition algorithms and methods, datasets can be used where needed, 

and in this context, datasets were created for commonly used alphabets, although not for all alphabets. 

Pattern recognition, which is the most important stage of character recognition, was first taken into 

account by Grimsdale, and a study was conducted in this context [1]. However, most research on handwrit-

ten character recognition is based on a technique known as analysis by synthesis, proposed by Eden in 1968 

[2]. This technique has been used in all methods, and structural character recognition approaches over time. 

The creation of the CEDAR dataset, one of the handwritten Latin character datasets, dates back to 

1994. It contains characters for handwritten words, letters, and numbers, such as city names and postal 

codes [3]. 
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In 1995, NIST published the “Special Dataset 19,” which consists of Latin script and cursive charac-

ters (letters and numbers). The NIST dataset has 62 labeled classes for numbers and letters [4]. In 1998, a 

28x28 pixel MNIST (Modified-NIST) dataset, consisting of numbers (10,000 tests, 60,000 trainings), was 

published using the dataset published by NIST [5]. MNIST, consisting of Latin letters, is frequently used 

by researchers in many studies as a handwritten digit dataset. 

Like the Latin alphabet, the Arabic alphabet is a universal one known worldwide. Arabic is officially 

used in 25 more than 300 million countries [6-8]. For this reason, the Arabic alphabet, like the Latin alpha-

bet, is frequently the subject of research in handwritten character classification studies, and many studies 

are carried out in this field. 

In this article, both machine learning techniques and deep learning methods were applied to hand-

written digit datasets created using Arabic and Latin alphabets, and the recognition performances of the 

methods were compared. Some machine learning methods were applied with various parameters on hand-

written datasets, and the results were analyzed. Likewise, the parameters specified by the authors in Deep 

learning methods were applied to handwritten datasets, and the results were examined. In addition, this 

study also compared the recognizability of handwritten digit datasets created using different alphabets 

(Latin and Arabic). The Arabic handwritten digit dataset MADBase [10] (60,000 training and 10,000 tests) 

and the Latin handwritten digit dataset MNIST [5] (60,000training and 10,000 tests) were used. 

2. Related Works 

Character datasets such as Arabic [9-12] and Latin [4, 13, 14] were created from different alphabets 

and languages to be used in handwriting character recognition. There are handwritten character recognition 

studies on many languages and alphabets in the literature. The literature review reveals some studies on 

handwritten character recognition and development. 

It is reported that a 94% accuracy rate was obtained in the CNN-based handwritten digit recognition 

study conducted by the researchers using the MNIST dataset [15]. K-nearest neighbor (KNN) is a basic 

classification method that can be used for classification when the data distribution is unknown [16]. 

Karakaya states that in her study, where machine learning methods are applied to the MNIST dataset, 

the methods that provide the highest efficiency are the K-nearest neighbor algorithm and the K-mean algo-

rithm [17]. In another study using Convolutional Neural Networks (CNN) with an MNIST dataset, 98.51% 

accuracy was reported for handwritten digit recognition [18]. Support Vector Machine (SVM) is a method 

proposed by Vapnik and attracting much attention in machine learning research. Numerous recent studies 

have shown that SVM can generally provide better overall performance, achieving better type accuracy 

than alternative data classification algorithms [19]. 
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In this study, in which the MNIST dataset was used, it is stated that the highest accuracy rate of 

95.88% among all machine learning algorithms was achieved with SVM, one of the machine learning al-

gorithms, for the identification of handwritten digits [20]. 

In this study, in which a CNN-SVM hybrid model is proposed for handwritten digit recognition, it is 

reported that 99.28% classification accuracy is achieved for the MNIST dataset by combining the advantage 

of CNN and SVM classifiers in handwriting digit recognition [21]. Furthermore, it is stated that SVM, MLP 

(Multilayer Perceptron), and CNN methods based on Machine learning and Deep learning algorithms are 

applied by using MNIST, and CNN gives more successful results for handwritten digit recognition [22]. 

3. Materials and Methods 

Many machine learning and Deep learning methods are used in handwriting character recognition 

studies. Therefore, the literature review decided to use our experiments' KNN and SVM models from ma-

chine learning methods, LeNet5 [5] and Effective CNN [17] models from deep learning methods. In addi-

tion, the Arabic alphabet handwritten digit dataset MADBase [10] (60,000 training and 10,000 tests) and 

the Latin alphabet handwritten digit dataset MNIST [5] (60,000 training and 10,000 tests) were used. 

3.1. MNIST Database 

MNIST dataset; It was published as 28x28 pixels, formatted and preprocessed, composed of only 

numbers (60,000 training, 10,000 tests), written in the Latin alphabet by approximately 500 participants 

[5]. Handwriting is frequently used in number recognition applications. Some character examples from the 

MNIST dataset are shown in Figure 1. 

Figure 1. Random character samples from MNIST [5] dataset (28x28 pixels) 
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3.2. MADBase Database 

ADBase dataset; It was created by writing in the Arabic alphabet by approximately 700 participants, 

consisting of digits (60,000 training examples, 10,000 test examples). In order to have the same format and 

size as the MNIST dataset, the ADBase dataset was modified to obtain the MADBase dataset [10]. Some 

character examples of the MADBase dataset are shown in Figure 2. 

 

Figure 2. Random character samples from the MADBase [10] dataset (28x28 pixels) 

3.3. Methodology 

Machine learning (ML) methods KNN and SVM, deep learning (DL) methods LeNet5 [5], and Ef-

fective CNN [17] were applied on MNIST (60,000 training examples, 10,000 test examples) and MADBase 

(60,000 training examples, 10,000 test examples) handwritten digit datasets. 

3.3.1 Machine Learning Methods  

KNN (k-Nearest Neighbor) is one of the simple classification methods that can be used for classifi-

cation when there is no prior knowledge about the data distribution [15]. Cosine and Euclidean distance 

metrics were used in experiments with KNN. In our experiments with KNN, we used the k metric value as 

3, 5, and 7, considering the literature studies [23]. 

SVM is a frequently used method in machine learning research. It provides both easy-to-apply and 

successful results on linear and non-linear data. In our experiments with SVM, RBF, Linear, and Poly 

kernel metrics were used. 
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3.3.2 Deep Learning Methods  

LeNet5 [5] is the oldest convolutional neural network, which takes the grayscale image as input and 

consists of a multilayer structure with learnable parameters. LeNet5 [5] model was applied to MNIST and 

MADBase datasets. In experiments with LeNet5, epochs size 30 and batch size 128 were used. The LeNet5 

Model summary is shown in Figure 3. 

 

Figure 3. LeNet5 model summary 

The Effective CNN [17] model consists of feature extraction with binary classification and convolu-

tion. In experiments with Effective CNN, epochs size 100 was used. The Effective CNN Model summary 

is shown in Figure 4. 

 

Figure 4. Effective CNN model summary 
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Experiments with KNN, SVM, LeNet5, and Effective CNN are performed in a local machine (Core 

i5-9300H 2.40GHz, 16 GB DDR4, and GPU NVIDIA GeForce). 

4. Results and Discussions 

Handwriting digit recognition experiments were carried out by using ML and DL methods on MNIST 

datasets created with the Latin alphabet and MADBase created with the Arabic alphabet, the performance 

of the methods was measured, and the results were compared. The results of the experiments with the KNN 

method are shown in Table 1, the results of the experiments with the SVM method in Table 2, and the 

results of the experiments with the DL (LeNet5 and Effective CNN) methods are shown in Table 3. 

Table 1. Classification results with the KNN method 

Datasets Metrics k Values Test Accuracy (%) 

MNIST 

Cosine 
3 97.33 

5  97.30 

7 97.27 

Euclidean 
3 97.05 

5  96.88 

7 96.94 

MADBase 

Cosine 
3 98.20 

5  98.20 

7 98.20 

Euclidean 
3 98.13 

5  98.14 

7 98.10 

When Table 1 is examined, it is seen that the MADBase dataset written in the Arabic alphabet has a 

better recognition rate than the MNIST dataset written in the Latin alphabet. Likewise, when examined in 

terms of KNN metrics, it is understood that the Cosine distance metric is more successful in both data sets 

than the Euclidean distance metric. 

Table 2. Classification results with the SVM method 

Datasets Metrics Test Accuracy (%) 

MNIST 

Gaussian 97.92 

Linear 76.49 

Poly 97.71 

MADBase 

Gaussian 98.52 

Linear 86.76 

Poly 97.68 
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Table 2. shows that the MADBase dataset written in the Arabic alphabet has a better recognition rate 

than the MNIST dataset written in the Latin alphabet. Likewise, when analyzed in terms of SVM metrics, 

it is seen that the Gaussian kernel metric is more successful than the Linear and Poly metrics in both data 

sets.When Table 1 and Table 2 are examined together, the MADBase dataset written in the Arabic alphabet 

exhibits better recognition performance in Machine learning methods compared to the MNIST dataset writ-

ten in the Latin alphabet. 

Table 3. Classification results with DL (LeNet5 [5] and Effective CNN [17]) methods 

Datasets Methods Test Accuracy (%) 

MNIST 
LeNet5  98.49 

Effective CNN  99.33 

MADBase 
LeNet5 98.79 

Effective CNN  99.11 

When Table 3 is examined, it is seen that the MADBase dataset written in the Arabic alphabet exhibits 

better classification performance with the LeNet5 method. Likewise, it is observed that the MNIST dataset, 

written in the Latin alphabet, exhibits better classification performance with the Effective CNN method. 

Considering the parameter numbers of the LeNet5 and Effective CNN methods (Figure 3 and Figure 4), it 

is thought that the MADBase dataset shows better classification success with the methods containing fewer 

parameters. 

When Table 1, Table 2, and Table 3 are analyzed together, it is seen that the MADBase dataset written 

in the Arabic alphabet has better classification success in many methods. This may be due to the diversity 

of participants (MNIST 500 participants, MADBase 700 participants). In addition, it can be said that the 

Arabic alphabet is more recognizable than the Latin alphabet. However, to make the final decision, it is 

thought that the number of participants should be the same and the participants should consist of the same 

people, with the number of images being equal. 

When all the experimental results are examined, it is seen that Deep learning methods provide better 

classification results than Machine learning methods. However, it is understood that a model or method 

does not show the same recognition success in datasets written in different alphabets. It is thought that this 

problem can be overcome by considering datasets written in different alphabets while developing the 

model. 
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5. Conclusions 

In this article, some of the known machine learning and deep learning methods are applied to hand-

written digit datasets created with Arabic and Latin alphabets, and the results are compared. KNN and SVM 

were applied from machine learning methods, LeNet5 [5], and Effective CNN [17] models from deep learn-

ing. Experiments show that Arabic numerals are almost more recognizable than Latin numerals. When the 

results obtained are examined, it is thought that the recognition success of a method or a developed model 

cannot be measured with a dataset written using only one alphabet, and its real performance can be revealed 

by classification with datasets written in different alphabets. Therefore, in our future study, it is considered 

to compare the performances of frequently used methods with datasets composed of handwritten letters 

written in different alphabets and to analyze the results. 

Declaration of Competing Interest: The author declares that he has no conflict of interest. 
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