
 

Journal of Studies in Science and Engineering 

 
 

 

 
Journal of Studies in Science and Engineering. 2024, 4(2), 136-158. https://doi.org/10.53898/josse2024428 https://engiscience.com/index.php/josse 

Research Article 

Crop-Weed Segmentation and Classification Using YOLOv8 Approach for Smart 

Farming  

Sandip Sonawane 1,* , Nitin N. Patil 2  

1 Department of Computer Engineering. R. C. Patel Institute of Technology, Shirpur, Kavayitri Bahinabai Chaudhari North Ma-

harashtra University, Jalgaon, 425001, India 

2 Shri Vile Parle Kelavani Mandal's College of Engineering, Shirpur, Dr. Babasaheb Ambedkar Technological University, Lonere, 

402103, India 

*Corresponding Author: Sandip Sonawane, E-mail: sandipsonawane2006@gmail.com 

 

Article Info Abstract 

Article History 

Received Jul 31, 2024 

Revised  Sep 13, 2024 

Accepted Sep 23, 2024 

Accurately segmenting crop and weed images in agricultural fields is crucial for precision farm-

ing and effective weed management. This study introduces a new method that leverages the 

YOLOv8 object detection model for precise crop and weed segmentation in challenging agricul-

tural scenes. Our approach involves preprocessing agricultural images to enhance feature repre-

sentation, followed by YOLOv8 for initial crop and weed detection. Thorough experiments using 

standard datasets comprising 2630 images demonstrate the effectiveness of our proposed method 

concerning precision, recall, mean average precision (mAP), and F1 score compared to existing 

techniques. These findings contribute to advancing crop-weed segmentation techniques, offering 

practical solutions for efficient weed management and precision agriculture. Our proposed ap-

proach outperforms state-of-the-art methods found in the literature. Our methodology presents a 

promising framework for automated crop-weed segmentation with applications in crop monitor-

ing, yield estimation, and weed control strategies, supporting sustainable agricultural practices.  
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1. Introduction 

In modern agriculture, the accurate identification and segmentation of crop and weed species from 

images play a pivotal role in optimising farming practices [1]. Differentiating between these entities is 

essential for effective crop management, weed control, and ensuring high agricultural productivity [2, 3]. 

Traditional manual segmentation methods are time-consuming and susceptible to human error, which un-

derscores the importance of developing the need for automated solutions to provide efficient and accurate 

segmentation of crops and weed instances within agricultural imagery [4]. 

Recent advancements in deep learning (DL) and computer vision have spurred substantial advance-

ments in object detection and segmentation. Among these, You Only Look Once (YOLOV8) has emerged 

as a powerful framework for object detection, renowned for its potential to handle real-time data while 

maintaining high accuracy [5]. While YOLOV8 excels in detecting objects within images, its potential for 
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precise segmentation of complex scenes, such as agricultural landscapes comprising crops and weeds, re-

mains relatively unexplored [6]. 

This work aims to rectify this deficiency by proposing an efficient approach for crop-weed image 

segmentation, leveraging the strengths of YOLOV8. By integrating YOLOV8's object detection capabili-

ties with tailored segmentation techniques, we seek to develop a methodology that accurately delineates 

crop and weed instances within agricultural images. Through this approach, we aim to address the chal-

lenges associated with traditional segmentation methods, including occlusions, varying illumination condi-

tions, and multiple overlapping instances [7]. 

The significance of automated crop-weed segmentation extends beyond academic research; it holds 

profound implications for practical applications in precision agriculture and weed management [8]. Accu-

rate segmentation enables farmers to precisely monitor crop growth, assess weed infestation levels, and 

implement targeted interventions, thereby minimising herbicide usage, reducing environmental impact, and 

optimising resource allocation [9]. 

This paper presents our proposed methodology for crop-weed image segmentation based on the 

YOLOV8 approach, along with comprehensive experimental evaluations to validate its effectiveness. We 

believe that our research contributes to advancing the field of automated crop management and precision 

farming, providing practical solutions for ecological agricultural applications in an era of increasing de-

mand for food security and environmental conservation. 

The key contributions of this paper are: 

• To design and develop a robust and accurate weed segmentation model using the YOLO algorithms. 

• To evaluate the performance of the proposed model in segmenting different crop-weed species com-

monly found in agricultural environments. 

• To provide a foundation for integrating YOLO-based crop-weed classification and segmentation systems 

into precision agriculture practices. 

• To compare the performance of proposed approaches with similar existing approaches. 

2. Literature Survey 

Weed-crop segmentation is an important computer vision task for precision agriculture [10]. It tries 

to automatically identify between crop plants and weeds in digital photos collected from various sources, 

including ground-based sensors and drones. Accurate segmentation enables targeted weed management 

strategies, resulting in improved crop yield, less pesticide use, and a lower environmental effect [11]. Early 

methods of crop-weed segmentation included conventional image processing techniques such as threshold-

ing and colour segmentation.  

Numerous research has presented novel methods for classifying crops and weeds using different im-

age analysis techniques. To train a neural network to identify pixels as either weed or crop, Bakhshipour, 
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et al. [12] developed a technique that extracts 52 different texture properties from photos using the Principal 

Component Analysis (PCA) method to identify 14 differentiating features. Similarly, Perez, et al. [13] ef-

fectively classified crop kinds and weeds using colour information and shape analysis to distinguish be-

tween vegetation and backdrop. Using form data, Jafari, et al. [14] used RGB colour components to identify 

sugar beetroot plants and differentiate them from common weed varieties. Zheng, et al. [15] employed a 

Support Vector Machine (SVM) classifier to distinguish maise crops and their weeds by focusing on colour 

variables and extracting nine important vectors. Lin, et al. [16] used a Decision Tree classifier to categorise 

weed and maise crops by combining form and texture features. Hamuda, et al. [17] created an algorithm 

that distinguishes between cauliflower crop patches in photos and weeds by combining colour features with 

morphological approaches. Together, this research demonstrates various advanced strategies for automated 

machine learning and image processing-based weed and crop identification. 

The above-discussed conventional image processing methods have several benefits, such as requiring 

less training time and little data for training [18, 19]. Furthermore, the models mentioned above do not 

require Graphics Processing Units (GPU) with much power [20]. However, there are a few restrictions 

attached to them. First, the fine intricacy of visual data may not be adequately taken by existing methodol-

ogies, which are frequently dependent on deliberately produced elements like colour, texture, and shape 

[21]. Second, these techniques are unreliable and can be easily affected by variations in the appearance of 

weed, image noise, and illumination changes [22]. Finally, individuals may find it difficult to adjust to 

various weed species or plant growth phases or to generalise successfully to new, unseen images [23]. 

Some researchers have used deep learning algorithms to investigate novel methods for crop-weed 

segmentation. You, et al. [24] created a DL model by incorporating DropBlock and hybrid-dilated convo-

lution into the backbone network. By expanding the receptive area, the hybrid-dilated convolution improves 

the network's contextual awareness, while DropBlock helps with weight regularisation by removing con-

tiguous image patches. Sodjinou, et al. [25] merged the K-means clustering technique with a DL-based U-

Net segmentation approach to efficiently segment crops and weeds. To improve performance, Osorio, et al. 

[26] added the normalised difference vegetation index (NDVI) as a background subtractor to SVM with 

Histograms of Oriented Gradients (HOG), YOLOV3, and Mask-RCNN for identifying weed in a lettuce 

field. Kim and Park [27] presented a convolutional neural network (CNN)-based multi-task semantic seg-

mentation approach that can identify weeds and crops at the same time. To categorise weeds and crops in 

RGB images, Fawakherji, et al. [28] presented a two-network sequence that uses a segmentation approach 

with an encoder-decoder to classify every pixel into either the mask or soil. For identifying weeds in a sugar 

beet farm, Nasiri, et al. [29] used a U-Net segmentation model that included ResNet50 architecture for 

extracting features. Khan and his team [29] created a cascade framework called CED-Net for crop and weed 

segmentation to obtain coarse-to-fine segmentation results. These results are then merged to achieve refined 
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segmentation outputs. These works demonstrate the adaptability and efficiency of deep learning techniques 

in tackling precision agriculture's weed-crop segmentation problems. 

When using artificial images created from actual plant examples and GANs, Khan, et al. [30] discov-

ered that the artificial images outperformed real datasets using Mask R-CNN. U-Net++ outperformed the 

conventional U-Net in weed picture segmentation, as shown by Sapkota, et al. [31], who achieved greater 

accuracy and IoU metrics, with a special emphasis on small weed detection. YOLOv8 outperformed Mask 

R-CNN regarding orchard segmentation, showing faster inference times and improved recall and precision 

[32]. RDS_Unet, a specialised semantic segmentation network designed for maise seedling field analysis, 

was introduced by Cui, et al. [33] and significantly improved IoU, precision, and recall metrics over U-net, 

an established approach. 

These strategies took advantage of the unique colour qualities of crops and weeds. However, their 

efficiency was restricted by factors such as fluctuating light conditions, overlapping foliage, and immature 

weed stages with negligible colour distinction [34].  

The introduction of DL, specifically CNNs, has transformed weed-crop segmentation. CNNs are ex-

cellent at extracting complicated features from visual data, making them ideal for this task [35]. Pioneering 

efforts used Fully Convolutional Networks (FCNs) to carry out segmentation, correctly categorising pixels 

in the input images as crops or weed. The U-Net architecture increased segmentation accuracy by including 

skip connections, which preserve spatial information necessary for exact boundary delineation [36]. 

The study compared various model architectures for crop-weed segmentation and classification [37], 

including lightweight CNNs and RNNs. Many researchers have employed machine-learning models not 

only for agricultural tasks but also in the medical field [38]. While lightweight CNNs are effective for 

classification [39], they lack accuracy and efficiency in detection and segmentation tasks. RNNs are less 

applicable for static image-based problems. The YOLOv8n-Seg model was chosen due to its task-specific 

efficiency, streamlining object detection and segmentation, and real-time detection capabilities. This model, 

particularly its lightweight "n" version, balances speed and accuracy, making it a practical choice for real-

time, pixel-level segmentation. 

3. Materials and Methods 

The proposed work used a dataset available on the Roboflow platform [40]. It contains 2630 images 

of crops and weeds. The input images in the dataset were separated into train, validation, and test subsets. 

Crop and weed samples in the dataset are visualised in Figure 1. 

Figure 2 (a) represents the distribution of labels, where the y-axis is labelled "Instances" and specifies 

the number of instances. The "crop" bar is taller than the "weed" bar, suggesting that there are more in-

stances of crops than weeds in the dataset. Overall, the figure presents data on crops and weeds, possibly 
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related to their spatial distribution (as suggested by the density plots) and the number of instances observed 

(as shown in the bar chart). The figure shows some distribution of measurements related to the crops and 

weeds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Input images of weeds and crops in the dataset  

 

Figure 2. Correlogram of instances in dataset (a) Distribution of labels (b) Correlation of labels 

Figure 2 (b) indicates a labelled correlogram, a graphical representation of the correlation between 

different variables. In object detection with YOLOv8, this correlogram likely represents the relationships 

between the normalised coordinates and bounding box dimensions predicted by the trained model. The 

correlogram includes scatter plots and histograms. Scatter plots show the relationship between two varia-

bles. Histograms along the diagonal, display the distribution of a single variable. The correlogram facilitates 

an understanding of the object detection model behaviour and can help diagnose issues or biases in the 

detection patterns, such as a tendency to detect objects in certain parts of the image or of certain sizes more 

frequently [41]. 
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3.1. Proposed Methodology 

This research adopts a YOLOv8-Seg-based image segmentation pipeline shown in Figure 3. Initially, 

a dataset of representative images is collected and meticulously annotated with corresponding segmentation 

masks. Data preprocessing steps like resizing and normalisation are applied to enhance training efficiency. 

In resizing, we scaled all the images to the same size and used normalisation to scale pixel values to the 

[0,1] range, ensuring consistent input for effective training. Furthermore, random flipping, rotation, and 

scaling were used to replicate various orientations and sizes, enhancing the model's robustness to real-world 

scenarios [42]. A YOLOv8-Seg model, chosen based on factors like hardware limitations and dataset com-

plexity, is then trained on the prepared dataset [43, 44]. The dataset is divided into subsets for training and 

testing. The training dataset was employed to instruct the model on segmenting objects depending on the 

given masks. Finally, the performance of the proposed approach is evaluated on the testing images with 

metrics like IoU and mAP to assess its generalisation ability. 

Using sophisticated backbone and neck architecture, the YOLOv8 improves feature extraction and 

object detection performance. This model emphasises maintaining an optimal balance between processing 

speed and detection accuracy. Notably, its Anchor-Free Detection feature makes the detection process more 

efficient and accurate. Additionally, applying the mosaic data augmentation method expands the size and 

diversity of the training dataset, thereby enhancing model generalisation. 

Figure 3. Workflow for training a YOLOv8-Seg model for image segmentation tasks 

The YOLOv8n-Seg model offers multiple aspects that enhance its interpretability. One key feature is 

its ability to perform both box detection and mask segmentation, allowing for image visualisation and anal-

ysis of crop and weed boundaries. This dual capability clearly explains how the model distinguishes be-

tween different objects. Additionally, the model assigns confidence scores to each identified object, which 

helps assess the reliability of its predictions and provides insight into how certain or uncertain the model is 

in classifying crops or weeds. Furthermore, the architecture of YOLOv8n-Seg is designed for efficiency 
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and interpretability. It is simple, lightweight structure allows for easier understanding than more complex 

models while offering robust end-to-end detection and segmentation. This combination of visual output, 

confidence scoring, and straightforward architecture enhances the model's transparency and reliability. 

Google Colab was utilised to train the YOLOv8n-Seg model, with the dataset images and label files 

prepared on the Roboflow platform and then imported into the program using API code in YOLOv8 

PyTorch format. The training process was executed on a Windows 10 machine using Ultralytics YOLOv8 

version 1.29 with Python 3.10.12 and Torch 2.2.1 with CUDA support on a Tesla T4 GPU. This arrange-

ment provides enough computational resources to handle the enormous dataset and ensure efficient training. 

The system requirements also featured the Tesla T4 GPU with 16 GB of VRAM for enhanced deep-learning 

applications. The number of studies presented in the literature study have employed object detection and 

segmentation models like improved YOLOv5-Seg and YOLOv8-Seg for crop-weed classification, segmen-

tation, and detection, often utilising standard and optimised hyperparameters outlined in Table 1 during 

model training. Therefore, these standard hyperparameters were similarly applied in our model training 

process. The hyperparameters provided in Table 1 were chosen through experiments rather than relying 

primarily on previous research. We originally tried several configurations of learning rates, batch sizes, and 

optimiser types to determine the ideal settings for optimising the model's performance while avoiding over-

fitting. The final settings, such as the starting learning rate of 0.0001 and batch size of 32, were chosen to 

strike a balance between training efficiency and model correctness. Additionally, the dropout rate of 0.25 

and weight decay of 0.0005 were adjusted to minimise overfitting during training. 

Table 1. Configuration of hyperparameters in YOLOv8 algorithm 

Parameters  Configuration  

Epochs 100 

Input Image size 640x640 

Optimizer Auto (AdamW) 

Batch size 32 

Learning rate (lr0) 0.0001 

Learning rate (lrf) 0.01 

Dropout 0.25 

Weight decay 0.0005 

Seed 42 

Batch Size 32 

Momentum 0.9 

3.2. Model Evaluation Indicators 

The research employed precision (P), recall (R), mAP, and F1 score as criteria to assess accuracy. P 

denotes the proportion of the predicted algorithm's detected area to the actual detected area, whereas R 
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specifies the ratio of correctly predicted classes out of all required classes. The mAP assesses sample accu-

racy based on anticipated boxes exceeding half of the actual bounding boxes. An increase in mAP values 

indicates improved prediction accuracy. 

In this manuscript, TP denotes the count of true positive samples, FP indicates the score of false 

positive images, N signifies the total quantity of samples, and Q represents the number of detected sesame 

crops. The average precision for the i-th class is denoted as APi. The Matthews Correlation Coefficient 

(MCC) assesses the quality of binary classification. It ranges from -1 to 1, with 1 indicating a flawless 

forecast, -1 indicating complete disagreement, and 0 suggesting no association [45]. All these metrics were 

computed from the confusion matrix, and the formulas for their calculation are given below. 

Precision =
TP

TP + FP
                                                                               (1) 

Recall =
TP

TP + FN
                                                                               (2) 

         𝑚𝐴𝑃 =
∑𝐴𝑃𝑖

𝑛
                                                                                        (3) 

 IoU =
TP

FP + TP + FN
                                                                    (4) 

MCC =
(TP x TN) − (𝐹𝑃 x 𝐹𝑁)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
                                  (5) 

4. Experimental Results 

4.1. Confusion Matrix 

 
Figure 4. Confusion Matrix illustrates the classification performance of the YOLOv8n-Seg model 
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Here, the confusion matrix in Figure 4 provides a more comprehensive view of the model's perfor-

mance across different classes. Based on the provided confusion matrix, we calculated the precision, recall, 

MCC, etc. 

Tables 2 and 3 provided a thorough performance evaluation of the efficiency of the proposed 

YOLOv8 model in box detection tasks and mask segmentation tasks, specifically for identifying boxes and 

masks, respectively. The model performs reasonably well, with precision, recall, and mAP scores indicating 

a good balance between correctly identifying objects and minimising false positives. For both box detection 

and mask segmentation, the 'weed' classes generally exhibit superior performance in identifying weed in-

stances compared to other classes ('Crop' and 'All'). 

From Table 2, our findings suggest promising levels of accuracy in detection. The "Crop" and "Weed" 

classes attained a precision value of 79.3% and 84.6%, recall rates of 74.9% and 80%, and mAP@0.5 results 

of 82.6% and 86%, respectively. Furthermore, the overall performance, with a mAP@0.5 of 84.3%, under-

scores the efficacy of the YOLOv8 segmentation algorithm in facilitating accurate and efficient box detec-

tion in agricultural settings. Regarding detection, YOLOv8s-seg achieved precision, recall, and mAP at 

different levels of IoU (0.5 and 0.5:0.95) of 0.846, 0.8, and (0.86, 0.606), respectively, for the "weed" class. 

Table 2. Box Detection Performance of YOLOv8 Segmentation Model 

   Box Detection 

Class Image Instances P R mAP@0.5 mAP@0.5-0.95 

All 220 378 0.819 0.775 0.843 0.58 

Crop 220 228 0.793 0.749 0.826 0.555 

Weed 220 150 0.846 0.8 0.86 0.606 

Our analysis in Table 3 indicates strong detection performance for both crop and weed classifications. 

The "crop" and "weed" classes accomplished a precision score of 80.4% and 86.2%, a recall rate of 75.8% 

and 80.7%, and mAP@0.5 of 83.1% and 86.5%, respectively. Notably, the comprehensive evaluation yields 

an overall mAP@0.5 of 84.8%, reflecting the algorithm's robustness and accuracy in mask segmentation 

tasks. In terms of segmentation performance, YOLOv8s-seg demonstrated precision, recall, and mAP re-

sults for the "weed" class at various IoU thresholds (0.5 and 0.5:0.95) of 86.2%, 80.7%, and (86.5%, 

55.5%), respectively. 

Table 3. Mask segmentation performance of the YOLOv8 segmentation model 

   Mask Segmentation 

Class Image Instances P R mAP@0.5 mAP@0.5-0.95 

All 220 378 0.833 0.782 0.848 0.557 

Crop 220 228 0.804 0.758 0.831 0.558 

Weed 220 150 0.862 0.807 0.865 0.555 
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4.2. Training Curves 

Figure 5 depicts a series of performance graphs associated with the training process of a YOLO v8 

model, presumably for object detection and instance segmentation tasks. Each graph visualises a distinct 

performance metric across training iterations. The horizontal axis (x-axis) tracks the number of training 

epochs, whereas the vertical y-axis denotes the measured value. Blue markers denote the actual measure-

ments, and the orange dashed line serves as a smoothed representation, facilitating trend visualisation by 

mitigating noise. 

The loss graph examines the accuracy of predicted bounding rectangles and assesses the capability 

of the trained model to segment objects within the images. As illustrated in the figure, the model achieved 

less value for loss and maximum values for precision, recall, and mAP's for box detection and mask seg-

mentation tasks across trained and validation datasets. A lower loss value indicates improved accuracy in 

box detection and more effective segmentation in the case of mask segmentation. The commonly utilised 

metric in the realm of object detection is mAP. The higher value of mAP represents better performance. 

In conclusion, the observed decrease in loss values and increased precision, recall, and mAP metrics 

suggest a progressive improvement in model performance as training progresses.  

 

Figure 5. Performance metric curves YOLOv8l-Seg model for box detection and mask segmentation task 

4.3. Segmentation Results 

Figure 6 represents the output of the YOLOv8 model by identifying and classifying objects as "weed" 

or "crop." A bounding box surrounds each object that the model has identified. The label inside the box 

indicates the class of the object ("Weed" or "Crop"), and the number represents the confidence score of the 

detection, varying from 0 to 1, with 1 being the highest confidence. 

In Figure 6(a), we see a variety of crops and their weeds with bounding boxes around them. In Figure 

6(b), the confidence scores are visible next to the labels. For example, one instance is identified as "crop" 

with 0.9 confidence threshold, indicating a maximum of confidence in the prediction. Another instance is 

identified as "weed" with a 0.5 confidence threshold, which demonstrates a reasonable confidence level. 
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This study's detection results highlight correct classifications and misclassifications produced by the 

proposed model. This provides visual examples of the YOLOv8n-Seg model accurately segmenting and 

classifying crops and weeds, demonstrating its capabilities in detecting objects of varying sizes and place-

ments. Additionally, we present examples of misclassifications, illustrating the model's limitations, such as 

confusion between overlapping crops and weeds or cases with poor lighting conditions. These qualitative 

results provide a more comprehensive understanding of the model's performance, helping to assess its ro-

bustness and areas for improvement. 

 

(a)                                    (b) 

Figure 6. (a) Image annotation of crops and their weeds (b) YOLOv8 predictions with a confidence score 

4.4. Box Detection Curves 

The performance of the YOLOv8 model on a box detection task is visualised in Figure 7. The preci-

sion-confidence curve in Figure 7(a) illustrates the precision levels achieved by the model (how many de-

tections were correct) on the y-axis against the confidence score, which ranges from 0 to 1 (the model's 

certainty in its prediction) across the x-axis for different classes. The display is a pair of curves, orange for 

"crop" and blue for "weed". These curves show the precision of the model for detecting crops and weeds at 

various confidence scores. The blue line marked as "all classes 1.00 at 0.953" indicates that when assessing 

all classes collectively. The model attains a 100% precision rate when the confidence score is 0.953. It 

indicates very high precision at this particular confidence level. The model performs better when the curve 

is higher throughout. The graph demonstrates that the model achieves excellent precision in detecting both 

"crop" and "weed" across various confidence levels, achieving a flawless precision score when all classes 

are combined at a high confidence score. It demonstrates the effective performance of the YOLOv8 model 

in distinguishing between crops and weeds in the given dataset. 
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Figure 7. Assessment of the YOLOv8 model's efficacy in detecting objects within bounding boxes. 

(a) Precision - Confidence Curve (b) Recall - Confidence curve 

The Recall-Confidence graph in Figure 7(b) assesses the model's performance regarding its capacity 

to correctly identify objects (recall) at various confidence threshold levels. This graph analyses the trade-

off between recall and confidence for predictions on different classes of models. Here, the confidence 

threshold increases across the x-axis, and recall is drawn across the y-axis. The blue curve labelled "all 

classes 0.86 at 0.000" indicates the overall performance across all classes at a specific confidence threshold, 

which in this case is very low (0.000), suggesting that the recall is 0.86 when almost all detections are 

considered, regardless of confidence. The curves for "crop" and "weed" are quite close, suggesting that the 

model's performance is relatively similar for both classes. Both curves start with high recall at low confi-

dence thresholds, which is typical as the model will predict many positives (including both true and false 

positives) when the threshold is low. 

A Precision-Recall graph in Figure 8 (a) visually represents the association for a model for diverse 

thresholds between precision (y-axis) and recall (x-axis). This visualisation provides a thorough overview 

of how the model performs at different confidence levels. Ideally, the curve should trend towards the top-

left corner, indicating a strong balance between precision and recall. The blue line in the graph is used for 

"crop" and the orange line for "weed." These lines illustrate the association between recall and precision 

for detecting crops and weeds. The legend indicates that the average precision (AP) for "crop" is 0.726 and 

for "weed" is 0.760. These values summarise the precision-recall curve and indicate the model's overall 

performance across the entire range of possible classification confidence levels. The thick blue line at the 

bottom of the graph depicts the mAP with a 0.743 score at 0.5 IoU threshold of 0.5 combined for all classes. 

The mAP of 0.743 designates good performance of the model in detecting objects when considering a 

moderate IoU threshold with a 0.5 value. 
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Overall, the graph illustrates that the proposed model demonstrates a comparatively elevated level of 

precision in recognising both "crop" and "weed" detections across most recall levels, with slightly better 

performance for "weed" detection.  

 

Figure 8. Assessment of the YOLOv8 model's efficacy in detecting objects within bounding boxes. (a) Pre-

cision-Recall Curve (b) F1 - Confidence Curve 

The F1-Confidence curve in Figure 8(b) illustrates the model's F1 score, with the y-axis representing 

this metric across the confidence threshold (certainty of the model in its prediction) on the x-axis for dif-

ferent classes. It represents the harmonious relations between precision and recall and offers a way to look 

at both metrics simultaneously. In an ideal scenario, the F1 curve would be a horizontal line at 1.0, indicat-

ing that the model achieves precision and recall perfectly. The higher the curve is throughout, the higher 

the model's efficacy. The orange and blue curves depict the model's F1 score for detecting crops and weeds, 

respectively, at various confidence thresholds. The model achieves a 0.74 F1 score with a 0.536 confidence 

value. This clarifies that the F1 score of 0.74 represents the total performance of all model classes.   

Overall, the graph indicates that the model demonstrates a strong F1 score for both "crop" and "weed" 

detections across a range of confidence levels, with the best overall performance for all classes combined 

occurring at a confidence threshold of approximately 0.536.  

4.5. Mask Segmentation Curves 

The evaluation of the YOLOv8 model's performance on a mask segmentation task is visualised in 

Figure 7. 

4.5.1. Precision-Confidence 

The confidence threshold, varying from 0 to 1, is depicted along the x-axis in Figure 9(a). The level 

at which the model determines whether an object is present or not is known as the confidence threshold. 
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The y-axis represents precision, which also ranges from 0.0 to 1.0. Precision assesses the ability of a model 

to recognise true positives correctly. It is calculated by dividing the number of predictions the model clas-

sified as positive by the number of correct positive predictions. The orange and light blue curves indicate 

the precision of weed and crop class, respectively. The blue curve represents the precision of all classes 

combined at various confidence thresholds. The point marked on this curve with the label "all classes 1.00 

at 0.953 " indicates that the model correctly identifies all positive cases at a confidence level of 0.953. 

 

Figure 9. Assessing the performance of the YOLOv8 model on the mask segmentation task (a)Precision-

Confidence Curve (b) Recall-Confidence curve 

4.5.2. Recall Confidence 

The relationship between the model's recall and the confidence threshold used for predictions is seen 

in this graph in Figure 9(b). The x-axis in the curve denotes confidence score, and the y-axis represents 

recall. The graph includes two separate curves. The blue curve corresponds to detections of the "crop" class, 

while the orange curve represents detections of the "weed" class. For every class, the thick blue line shows 

the mean performance, indicating a specific value of 0.86 at a confidence limit of zero. This demonstrates 

a large recall rate, suggesting the model's capability to identify relevant portions of objects across all cate-

gories at this threshold. 

4.5.3. Precision-Recall Confidence 

The graph in Figure 10(a) shows two curves, each representing the precision-recall relationship for 

different classes detected by the model. The vertical axis of the curve indicates precision, whereas the hor-

izontal axis indicates recall. Precision indicates how accurate the predictions are when the model claims an 

object belongs to a certain class. Recall evaluates the ability of the model to recognise every pertinent 

instance of a specific class. The blue curve with an Average Precision (AP) score of 0.731 represents the 
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"crop" class, whereas the orange curve with an AP score of 0.765 represents the "weed" class. Overall, the 

graph indicates the YOLOv8 model demonstrates effective discrimination between the "crop" and "weed" 

categories, with slightly better performance on the "Weed" class based on the AP scores. The mAP@0.5 

value of 0.748 demonstrates robust overall performance concerning the designated IoU threshold. 

  

Figure 10. Assessing the performance of the YOLOv8 model on the mask segmentation task (a) Precision-

Confidence Curve (b) Recall-Confidence curve 

4.5.4. F1 Score 

The graph in Figure 10(b) illustrates the confidence threshold across the x-axis and recall across the 

y-axis. The blue line in the curve denotes the recall-confidence curve, which aggregates data from all classes 

and is labelled "all classes 0.86 at a 0.000," suggesting that at a 0.0 confidence score, the recall for all 

classes is 0.86. The orange and light blue lines represent the recall-confidence curves for the "weed" and 

"crop" classes. The lines are very close throughout the graph, suggesting that the model's performance on 

these two classes is comparable regarding recall across various confidence levels. 

Each of the three curves originates from the upper-left corner of the chart, illustrating high recall at 

low confidence thresholds. With the increase in confidence threshold, there is a typical decline in recall 

across the board. This outcome is anticipated because the model becomes more confident about its predic-

tions and more selective, which can lead to fewer true positives being detected, thus lowering the recall. 

4.5.5. Visualisation using TensorBoard mAP50 and mAP50-95 (Box and Mask) 

TensorBoard is a visual aid for TensorFlow, allowing you to monitor various metrics while training 

YOLOv8. These charts in Figure 8 illustrate a particular model's performance outcomes. The graphs plot 
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different metrics over the number of epochs (or iterations) during training. The Figure 11(a) and Figure 

11(b) graphs show the metric "mAP50" for the bounding box (B) predictions and mask (M) predictions, 

respectively. Figures 11(c) and 11(d) graph show the metric "mAP50-95" for the bounding box (B) predic-

tions and mask (M) predictions, respectively. Across all the graphs, the horizontal axis (X-axis) tracks 

training progress by showing the number of training iterations completed. The vertical Y-axis shows the 

performance metric value being measured. The lines illustrate how these metrics change over training, and 

the shaded areas depict the variation or uncertainty around those values. The rising metric values across the 

graphs suggest that the model's effectiveness is generally increasing over time. The fluctuations and the 

shaded areas suggest some variance in the performance, which is typical during training due to factors like 

adjustments of Learning rate (LR), data augmentation, and the randomness in the model training. 

 

Figure 11. Visualisation of mAP metric using TensorBoard 

4.5.6. Precision and Recall (Box and Mask) 

Graphs combining recall and precision visually represent two crucial metrics used to evaluate how 

well an object detection or segmentation model performs. Figure 12 displays each metric for both bounding 

box predictions (B) and mask predictions (M), relevant for tasks involving object detection and instance 

segmentation. The graph labelled "metrics/precision(B)" in Figure 9(a) shows the precision of the bounding 

box predictions over several epochs. The model is more accurate in its positive predictions as precision 

increases, indicating a reduction in false positives. The graph labelled "metrics/precision(M)" in Figure 
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12(b) shows the precision of the mask predictions. This is similar to the bounding box precision but specif-

ically for the segmentation masks that the model predicts. In Figure 12(c), the graph labelled "metrics/recall 

(B)" shows the recall of the bounding box predictions. The model is more accurate in its positive predictions 

as precision increases, indicating a reduction in false positives. In Figure 12(d), the graph labelled "met-

rics/recall (M)" shows the recall for the mask predictions. This measures how well the model is at detecting 

the actual objects and correctly segmenting them. 

 

Figure 12. Visualisation of precision and recall metrics using Tensorboard 

The graphs show how the model's performance changes over training. Each horizontal step represents 

one training cycle (epoch) completed on the training data. The vertical axis shows the value of the specific 

performance measure being tracked. The solid line represents the average performance, and the shaded area 

indicates how much the performance varied during training. These graphs show that precision and recall 

are improving over time for both bounding box and mask predictions, with performance metrics represent-

ing improvements in the model's effectiveness during training.  

4.5.7. Loss (Box and Mask) 

In Figure 13, each graph represents a different loss metric over training epochs. It shows both datasets' 

box loss, classification loss, and domain-specific loss (train and validation). The model's prediction accu-

racy is increasing as the loss decreases. This suggests that the model is getting better at pinpointing object 
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locations. All six graphs consistently depict a decline in loss. This suggests the model is effectively learning 

and enhancing its performance using training and validation sets of data. 

 
Figure 13. Visualisation of loss metric using Tensorboard 

4.6. Comparison of the Proposed Algorithm with Existing Algorithms  

In this study, an evaluation of different YOLO model variants was conducted for the image segmen-

tation, as shown in Table 4. The models assessed include YOLOv5n-seg, YOLOv5s-seg, YOLOv8n-seg, 

and YOLOv8s-seg, each differing in architecture complexity and model size. Performance metrics such as 

precision, recall, F1 score, mAP@0.5, and mAP@0.5-0.95 were employed to compare the models. Re-

markably, YOLOv8n-seg and YOLOv8s-seg demonstrated superior results, achieving precision score of 

77.1% and 79.5%, respectively, along with corresponding mAP@0.5 scores of 74.6% and 76.7%. However, 

an innovative YOLOv8n-seg architecture was proposed in this research, exhibiting remarkable improve-

ments with a precision result of 83.3% and a mAP@0.5 score of 84.8%, surpassing the performance of 

existing YOLO variants, as shown in Figure 14. These findings highlight the efficacy of the proposed 

YOLOv8n-seg model, underscoring its potential for advancing object detection and segmentation tasks. 

Table 4. Comparative results of existing approaches with the proposed approach 

Reference Model Precision Recall mAP@0.5  mAP@0.5-0.95 

Anbalagan, et al. [45] 

YOLOv5n-seg 69.69 60.6 60.6 28.7 

YOLOv5s-seg 76.4 47.4 69.7 33.4 

YOLOv8n-seg 77.1 70.5 74.6 36.9 

YOLOv8s-seg 79.5 71.5 76.7 39.3 

Islam, et al. [46] YOLOv5 78.2 85.1 72 NA 

Proposed YOLOv8n-seg 83.3 78.2 84.8 55.7 

https://doi.org/10.53898/josse2024428
https://engiscience.com/index.php/josse
mailto:mAP@0.5
mailto:mAP@0.5-0.95


Crop-Weed Segmentation and Classification Using YOLOv8 Approach for Smart Farming 154 
 

 
Journal of Studies in Science and Engineering. 2024, 4(2), 136-158. https://doi.org/10.53898/josse2024428 https://engiscience.com/index.php/josse 

 

Figure 14. Comparative graph of proposed modified segmentation model with existing approaches  

5. Discussions 

Detecting and classifying crops and weeds present numerous challenges that impede accurate analy-

sis. These challenges include occlusion, where other objects obscure plants; similarity in colour and texture 

among different plant types; shadows cast on plants in natural light conditions; deviations in colour and 

texture due to illumination and lighting; and different weed species that appear similar. Additionally, in-

consistencies in the appearance of the same crop or weed during different growth phases, motion blur, noise 

effects, and variations caused by geographical location, crop diversity, weather, and soil conditions further 

complicate accurate detection. 

Our proposed YOLOv8n-Seg model effectively addressed several of these issues. For instance, mo-

saic data augmentation improved the model's robustness to occlusions and overlapping leaves by exposing 

it to diverse item placements and interactions. This technique enhanced the model's ability to manage oc-

clusions better than previous methods. Furthermore, the model showed resilience to variations in lighting 

and shadows. However, extreme illumination conditions still pose challenges, which we plan to address 

through additional image preprocessing improvements. 

Enhanced accuracy in detecting and classifying crops and weeds leads to more efficient weed man-

agement, reducing reliance on manual labour and herbicides. This reduces costs and minimises environ-

mental impact, contributing to more sustainable agricultural practices. The model's robustness across vari-

ous conditions enables integration into real-time monitoring systems on drones and field robots, optimising 

resource use and supporting better crop health assessments. These advancements contribute to more precise 

and eco-friendly agricultural methods. 

While the model performed well across different weed species and growth phases, it faced difficulties 

due to regional and environmental variations. To mitigate these issues, future research will focus on the 
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expanding the dataset to include a broader range of settings and optimising the model to handle these di-

verse conditions effectively. Additionally, resource constraints impacted the model's efficiency, particularly 

with large datasets. To enhance real-time performance in agricultural scenarios, we are refining the 

YOLOv8 model for deployment on edge devices, such as autonomous drones and field robots. The model's 

deployment in real-world agricultural settings faces challenges due to resource requirements and calibra-

tion, necessitating computational power and field-specific adjustments. Future research should enhance 

training, optimise for diverse conditions, and improve computational efficiency. These revisions are in-

tended to address the unique challenges identified and improve the model's applicability and effectiveness 

in practical agricultural settings. 

6. Conclusions 

This study highlights the importance of accurate segmentation in agricultural image analysis. By pre-

cisely separating crops from weeds, we can improve weed identification and support precision farming 

practices. Leveraging the powerful YOLOv8 object detection model, we introduced a novel methodology 

that integrates specialised segmentation techniques to precisely delineate individual crops and weeds, even 

in challenging agricultural environments. Through extensive experimentation on benchmark datasets con-

taining 2630 diverse crop and weed species, this study highlighted the importance of accurate segmentation 

in agricultural image analysis. By precisely separating crops from weeds, we can improve weed identifica-

tion and support precision farming practices. Our method shows encouraging performance on both 'crop' 

and 'weed' classes, achieving high precision, recall, mAP, and F1 score values. The robust performance of 

the YOLOv8 segmentation algorithm, as highlighted by its overall mAP@0.5 of 0.843 and 0.848, reaffirms 

its efficacy in facilitating accurate and efficient box detection and mask segmentation, respectively, in ag-

ricultural contexts. These findings emphasise the potential of our methodology to contribute significantly 

to advancing precision agriculture, allowing farmers to make decisions for optimised weed control and crop 

management strategies.  

Our approach includes model pruning to reduce complexity, quantisation to lower precision, and 

knowledge distillation to create a smaller, more efficient model. We will also focus on hardware-specific 

tuning to utilise device capabilities and address real-time performance constraints. Challenges include bal-

ancing accuracy with computational efficiency and ensuring integration with edge devices.  

We intend to improve the training process by including techniques like transfer learning from pre-

trained models, which could hasten convergence and improve performance on our specific job. Hyperpa-

rameter optimisation, such as changes to learning rates, dropout rates, and batch sizes, will be thoroughly 

investigated to optimise the training process further. 

Further research may explore integrating additional data sources and refining segmentation tech-

niques to improve the algorithm's functionality in real-world agricultural practices. Additionally, research 
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work focuses on real-world deployment and evaluation of the developed methodology in diverse agricul-

tural settings to assess its practical applicability and identify potential limitations. 
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