Effect of Different Types and Ratio of Fibers on the Tensile Strength of Reinforced Foam Concrete: A Review
Main Article Content
Abstract
Reducing the weight of buildings—particularly dead loads—is one effective way to lower construction costs. Foam concrete offers a viable alternative to conventional concrete for non-structural elements. This paper reviews the impact of incorporating polypropylene, natural fibers, steel fibers from waste tyres, and carbon fibers on the tensile strength of foamed concrete. According to the literature, the polypropylene content varied between 0.2% and 0.8%, with different target densities. Steel fibers extracted from scrap tyres ranged from 0.2% to 0.6%, while carbon fiber and Henequen fiber (natural fiber) were used separately or in combination with polymers in volumetric fractions ranging from 0.5% to 1.5%. The results presented in this paper indicate that tensile strength gradually increased as the volume of fibers increased up to a certain point, suggesting an optimal dosage for enhancing performance.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Emerging Technologies and Engineering Journal is licensed under a Creative Commons Attribution License 4.0 (CC BY-4.0).
References
Valore, R. C. (1954, June). Cellular concretes part 2 physical properties. In Journal Proceedings (Vol. 50, No. 6, pp. 817-836).
Ramamurthy, K., Nambiar, E. K., & Ranjani, G. I. S. (2009). A classification of studies on properties of foam con-crete. Cement and concrete composites, 31(6), 388-396.
Richard, T., Dobogai, J., Gerhardt, T., & Young, W. (1975). Cellular concrete-A potential load-bearing insulation for cryogenic applications. IEEE Transactions on Magnetics, 11(2), 500-503.
Aldridge, D. (2005). Introduction to foamed concrete: what, why, how? In use of foamed concrete in construction: Proceedings of the international conference held at the University of Dundee, Scotland, UKon 5 July 2005 (pp. 1-14). Thomas Telford Publishing.
De Rose, L., & Morris, J. (1999). The influence of mix design on the properties of microcellular concrete. Specialist techniques and materials for construction, 185-197.
Kearsley, E. P., & Wainwright, P. J. (2001). The effect of high fly ash content on the compressive strength of foamed concrete. Cement and concrete research, 31(1), 105-112.
Turner, M. (2001, July). Fast set foamed concrete for same day reinstatement of openings in highways. In Proceedings of one day seminar on foamed concrete: properties, applications and latest technological devel-opments (pp. 12-18). Loughborough University.
Pickford, C., & Crompton, S. (1996). Foamed concrete in bridge construction. Concrete, 30(6).
Norlia, M. I., Amat, R. C., Rahim, N. L., & Sallehuddin, S. (2013). Performance of lightweight foamed concrete with replacement of concrete sludge aggregate as coarse aggregate. In Advanced Materials Research (Vol. 689, pp. 265-268). Trans Tech Publications Ltd.
Wee, T. H., Babu, D. S., Tamilselvan, T., & Lim, H. S. (2006). Air-void system of foamed concrete and its effect on mechanical properties. ACI materials journal, 103(1), 45.
Bing, C., Zhen, W., & Ning, L. (2012). Experimental research on properties of high-strength foamed con-crete. Journal of materials in civil engineering, 24(1), 113-118.
Tikalsky, P. J., Pospisil, J., & MacDonald, W. (2004). A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete. Cement and concrete research, 34(5), 889-893.
Beningfield, N., Gaimster, R., & Griffin, P. (2005). Investigation into the air void characteristics of foamed concrete. In Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5 July 2005 (pp. 51-60). Thomas Telford Publishing.
Jones, M. R., & McCarthy, A. (2005). Preliminary views on the potential of foamed concrete as a structural mate-rial. Magazine of concrete research, 57(1), 21-31.
Nambiar, E. K., & Ramamurthy, K. (2006). Influence of filler type on the properties of foam concrete. Cement and concrete composites, 28(5), 475-480.
Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and concrete research, 36(6), 1032-1041.
]Mindess, S. (Ed.). (2019). Developments in the Formulation and Reinforcement of Concrete. Woodhead Pub-lishing.
Karl, S., & Worner, J. D. (1993). Foamed concrete-mixing and workability. In Special concrete-workability and mixing (pp. 217-224). E & FN Spon London.
Kunhanandan Nambiar, E. K., & Ramamurthy, K. (2008). Fresh state characteristics of foam concrete. Journal of materials in civil engineering, 20(2), 111-117.
Kearsley, E. P., & Visagie, M. (1999). Micro-properties of foamed concrete. In RK Dhir, NA Handerson (Eds.), Proceedings of congress on creating with concrete (conference on specialist technology and materials for concrete construction) (pp. 173-184).
Jones, M. R., & McCarthy, A. (2005). Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11), 1398-1409.
Richard, A. O., & Ramli, M. (2013). Experimental production of sustainable lightweight foamed concrete. Current Journal of Applied Science and Technology, 994-1005.
Akil, H., Omar, M. F., Mazuki, A. M., Safiee, S. Z. A. M., Ishak, Z. M., & Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9), 4107-4121.
Panesar, D. K. (2013). Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and building materials, 44, 575-584.
Yap, S. P., Bu, C. H., Alengaram, U. J., Mo, K. H., & Jumaat, M. Z. (2014). Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Materials & Design, 57, 652-659.
Awang, H., & Ahmad, M. H. (2014). Durability properties of foamed concrete with fiber inclusion. World Academy of Science, Engineering and Technology International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8(3).
Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of development. Cement and concrete composites, 19(2), 107-122.
Ollo, R. F., & Hays, C. D. (1998). Engineering material properties of a fiber reinforced cellular concrete (FRCC). ACI Mater. J., 95(5).
Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight ag-gregate concrete. Cement and Concrete Composites, 25(2), 207-213.
Furlan Jr, S., & de Hanai, J. B. (1997). Shear behaviour of fiber reinforced concrete beams. Cement and concrete composites, 19(4), 359-366.
Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27(1), 73-77.
Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash con-crete. Materials & Design, 32(2), 1044-1049.
Hadipramana, J., Samad, A. A. A., Zhao, Z. J., Mohammad, N., & Wirdawati, W. (2012). Influence of Polypropylene Fiber in strength of foamed concrete. In Advanced Materials Research (Vol. 488, pp. 253-257). Trans Tech Pub-lications Ltd.
Hazlin, A. R., Iman, A., Mohamad, N., Goh, W. I., Sia, L. M., Samad, A. A. A., & Ali, N. (2017). Microstructure and tensile strength of foamed concrete with added polypropylene fibers. In MATEC Web of Conferences (Vol. 103, p. 01013). EDP Sciences.
Jhatial, A. A., Inn, G. W., Mohamad, N., Alengaram, U. J., Mo, K. H., & Abdullah, R. (2017, November). Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 271, No. 1, p. 012058). IOP Publishing.
Guerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of steel and macro-synthetic fibers on concrete properties. Fibers, 6(3), 47.
Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Compressive and flexural strength of fi-ber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Construction and building materials, 198, 479-493.
Hoyos, C. G., Zuluaga, R., Ganan, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540-1548.
Chiacchiarelli, L. M., Cerrutti, P., & Flores‐Johnson, E. A. (2020). Compressive behavior of rigid polyurethane foams nanostructured with bacterial nanocellulose at low and intermediate strain rates. Journal of Applied Polymer Science, 137(20), 48701.
Kandemir, A., Pozegic, T. R., Hamerton, I., Eichhorn, S. J., & Longana, M. L. (2020). Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials. Materials, 13(9), 2129.
Ramakrishna, G., & Sundararajan, T. (2005). Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cement and concrete composites, 27(5), 547-553.
Okeola, A. A., Abuodha, S. O., & Mwero, J. (2018). Experimental investigation of the physical and mechanical properties of Sisal fiber-reinforced concrete. Fibers, 6(3), 53.
Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., ... & Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075.
Tolêdo Filho, R. D., Scrivener, K., England, G. L., & Ghavami, K. (2000). durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and concrete composites, 22(2), 127-143.
Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1-16.
Claramunt, J., Ardanuy, M., García-Hortal, J. A., & Tolêdo Filho, R. D. (2011). The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 33(5), 586-595.
de Klerk, M. D., Kayondo, M., Moelich, G. M., de Villiers, W. I., Combrinck, R., & Boshoff, W. P. (2020). Durability of chemically modified sisal fibre in cement-based composites. Construction and Building Materials, 241, 117835.
Mahzabin, M. S., Hock, L. J., Hossain, M. S., & Kang, L. S. (2018). The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Construction and Building Materials, 178, 518-528.
Mydin, M. O., Rozlan, N. A., & Ganesan, S. (2015). Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. J. Material and Environmental Sciences, 6(2), 407-411.
Liu, Y., Wang, Z., Fan, Z., & Gu, J. (2020). Study on properties of sisal fiber modified foamed concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 744, No. 1, p. 012042). IOP Publishing.
Dewey, L. H. (1931). Sisal and henequen, plants yielding fiber for binder twine (No. 186). US Department of Ag-riculture.
Castillo-Lara, J. F., Flores-Johnson, E. A., Valadez-Gonzalez, A., Herrera-Franco, P. J., Carrillo, J. G., Gonzalez-Chi, P. I., & Li, Q. M. (2020). Mechanical properties of natural fiber reinforced foamed concrete. Materials, 13(14), 3060.
Feng, Z. Y., & Sutter, K. G. (2000). Dynamic properties of granulated rubber/sand mixtures. Geotechnical Testing Journal, 23(3), 338-344.
Senetakis, K., Anastasiadis, A., & Pitilakis, K. (2012). Dynamic properties of dry sand/rubber (SRM) and grav-el/rubber (GRM) mixtures in a wide range of shearing strain amplitudes. Soil Dynamics and Earthquake Engi-neering, 33(1), 38-53.
Edinçliler, A., Baykal, G., & Saygılı, A. (2010). Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Management, 30(6), 1073-1080.
Atoyebi, O. D., Odeyemi, S. O., Bello, S. A., & Ogbeifun, C. O. (2018). Splitting tensile strength assessment of lightweight foamed concrete reinforced with waste tyre steel fibres. International Journal of Civil Engineering and Technology (IJCIET), 9(9), 1129-1137.
Kim, Y. J., Hu, J., Lee, S. J., & You, B. H. (2010). Mechanical properties of fiber reinforced lightweight concrete containing surfactant. Advances in Civil Engineering, 2010.
Li, Q., Wang, H., Bullen, F., & Reid, A. (2012, January). Numerical simulation of porous structure in foam concrete on thermal insulation property. In Proceedings of the 8th Asian-Australasian Conference on Composite Materials (ACCM 2012) (Vol. 1, pp. 302-309). University of Southern Queensland.
Abbas, W., Dawood, E., & Mohammad, Y. (2018). Properties of foamed concrete reinforced with hybrid fibres. In MATEC Web of Conferences (Vol. 162, p. 02012). EDP Sciences.